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ON THE EIGENVALUE PROBLEM FOR COUPLED
ELLIPTIC SYSTEMS*

ROBERT STEPHEN CANTRELLY AnD KLAUS SCHMITT?

Abstract. We consider the eigenvalue problem

r
Liu,=A Z mygu;  in £,
i=1

u =0 on 99,

where  is a bounded domain in R”, nx 1, with smooth boundary 9Q and for k=1,---,r, L, is a second
order uniformly elliptic operator. The coupling coefficients are such that m;; 20, i=j and for at least one k,

mj;+0. We establish the existence of positive characteristic values with associated positive solutions. We
also investigate the multiplicity of such characteristic values and establish bifurcation results for nonlinear
perturbations of the linear problem.
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1. Introduction. Consider the eigenvalue problem

i Lyu,=A) m,u, in,
(1.1) k% k Ié:l ki%i

u,=0 on 9%,

where @ is a bounded domain in R”, n>1, with smooth boundary 9%, and for
k=1,---,r

(1.2) Zlaua P +Za +a0

iJ

isa uniformly elliptic differential operator of second order with coefficients continuous
on & and af(x)=0, x§. The coefficients m,;, 1 <k, i <r are also assumed to belong
to C%(Q,R). The parameter AR is assumed to be positive.

In a recent paper, P. Hess [11] showed that if m;;>0, i+ and if for at least one k,
mj,#0, then (1.1) has a positive characteristic value with associated nontrivial solution
u=col(u;, -, u,)EK={veCQ,R"): v,20, 1 <i<r)}. The purpose of this paper is
to examine this important result more closely. We obtain a somewhat more detailed
understanding of the multiplicity and character of the nontrivial solutions to (1.1),
leading to results on bifurcation questions for associated nonlinear eigenvalue prob-
lems.
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To this end, we shall begin by proving the main result of Hess [11] in' a slightly
different way, relying on ideas employed earlier by the second author in [18]. We then
give an extension of the result to the multiparameter problem

Loy, =\ m u;, in,
(1.3) Kok k,g'l ki
u,=0 ondf, k=1,---,r

Together with some conditions for the uniqueness and simplicity of such characteristic
values of (1.1), our result on (1.3) explains how multiplicities greater than one occur in
a number of cases. Finally, we apply these results to the problem of positive solutions
to nonlinear eigenvalue problems, including the problem of coexistence steady states.in
the Volterra—Lotka competition model with diffusion, recently studied by Cosner and
Lazer [8].

2. Main results. Let L,, 1<k<r also denote the realization of L, in CJ(Q,R)
subject to Dirichlet boundary conditions. Then L,: C{(&,R)>dom(L,)- CX(2,R) is
invertible, with compact inverse. Furthermore, L;' is a positive operator with respect
to the cone of nonnegative functions. Denote by M the matrix M=(m;;), 1 <i, j<r
and think of M as a multiplication operator. (Recall that m; >0 if i+# ]) Then (1.1)
may be written as

l_[“—

(2.1) Lu=AMu,
where
L, 0 u
L= , u=|: |,
0 L u,

r

and L 'isa compact operator on C{(,[R") which is positive with respect to the cone
K in C(Q,R"),ie. L"Y(K)CK.

Let us choose p> 0 such that all elements on the main diagonal of M +pl=M+p,
where I is the r X r identity matix, are positive. Then (2.1) is equivalent to

(2.2) (L+Ap)u=A(M+p)u,

and since p and A are positive (L+pA)~! is also a compact operator positive with
respect to K. Thus (2.2) is equivalent to

(2.3) u=A(L+Ap) " (M+p)u

We let Ay =A(L+Ap) (M +p). The following result then holds.

LemMMA 2.1. Let r(A,) denote the spectral radius of A,. Then the mapping A —r(4,)
is continuous on (0, 00) with lim, _, ¢+ r(4,)=0.

Proof. The map A4, depends continuously on A in the strong operator topology.
Since the family { 4, } is a compact family, it follows from a result of Nussbaum [13]
that the map A - r(4,) is continuous.

LEMMA 2.2. Assume m},#0 for some k€ {1,---,r}. Then there exists A>0 such
that r(A,)=1.

Proof. According to Hess—Kato [12], there exists A>0 and u, € CO(Q,R), u,(x)>
0, x€Q such that
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Letting u=col(0,- - -, u,,0,---,0) one gets Lu<AMu. Thus (L+Ap)usA(M+p)u.
Hence for this value of A
usA(L+Ap) " (M+p)u,

ie u<A,u.
Iterating this inequality, we get u <A%u, and since the C{ norm is monotone with
respect to the cone K, we get

|ul< | AR ul.

Hence 1 <[A4%|*". Thus r(4,)=1.
_ THEOREM 2.3. Let mi,#0 for some k&€ {1,2,---,r}. Then there exists a smallest
A>0 and ue K\{0} such that

u=Axu,

i.e. Lu=AMu.
Proof. Since r(4,) is continuous and r(4,)—0 as A— 0 and since by Lemma 2.2,
there exists A such that r(4,)=>1, it follows that there exists a smallest A such that
r ( Aj\) =1,

Since A4y is positive and compact and K is total one may employ the theorem of
Krein—Rutman (see [2]) to conclude that there exists ¥ € K\ {0} such that

u=r(A5)u=A4zu,

i.e., Lu=\Mu.

COROLLARY 2.4. If A >0 is any other characteristic value, then A= \.

Proof. Let A be a characteristic value. Then there is #+0 such that u=4,u.
Iterating, one obtains u=A}u. Hence 1 <|4}*/", implying that r(4,)=1. The result
then follows from the proof of Theorem 2.3.

Now consider (1.3). Assume that (A,- - -, A,) is restricted to a ray emanating from
the origin of R” into the positive cone. Theorem 2.3 then obtains in most cases. To see
this, observe that if (A,,- - -, A,) is as restricted, (1.3) is equivalent to

(2.4) Lu=tMu,

where
M= M, el

AJ=20 and (A})*+ --- +(A%)=1. The result follows provided 7}, =Amf,#0 for
some k& {1,2,---,r}.
Suppose now that A=(A,,- - -, X,) is such that A,;>0 and |A|?>> 0. Define

2 2 = P
A=INT{L+IN ) (M+p)

with
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If [A°2=1, and A}>0, i=1,---,r, we define F(\")=7#(\"), where £>0 is the smallest
number such that r(Ape)= 1 There are a number of conditions under which the
function F is continuous. In particular, we have the following result.

THEOREM 2.5. F is continuous at N’ (R ,)'NS™! provided any one of the following
conditions holds:

i) m;;20 fori,j=1,---,k.

i) If F(}\O =X, then t is the only positive number t such that u=Au has a
nontrivial solution u€ K.

Proof. In case (i), r(A,y) is a nondecreasing function of ¢, 1= 0. The result follows
from an application of a result of Nussbaum [13]. In case (ii), one uses a simple
compactness argument.

3. Coupling and multiplicity. In this section we investigate the question of unique-
ness and multiplicity of the characteristic values of (1.1). We begin w1th the following
lemma.

LemMA 3.1. Suppose p>0 is chosen so that all entries of the matrix M+p are
nonnegative and that there exists x,€Q such that (M+p)(x,) is irreducible. Then if
Lu=AMu and uc K\ {0}, then in fact u€int K (where int is with respect to the (V)

topology).
Proof. Since Lu=A Mu we have that

(L+Ap)u=A(M+p)u,

and componentwise

(L+Ap)u;=X\ Y, (m,+p8;;)u;20.

j=1
It then follows from the Hopf maximum principle that for each i€ {1,---,r}, either
u;=0on Q or u,(x)>0, for all x€Q.

Since u€ K\ {0}, there must be at least one iy {1,- - -, r } such that »,; (x)>0 on
Q. If there is no other such i, (M+p)(x,) has a one-dimensional invariant subspace,
contradicting the assumption of irreducibility. Hence there is i;€{1,---,r}, i;#i,
such that u,(x)>0 on Q. If i, and 11 are. the only such, then (M-+p)(x,) has a
two- d1mens1onal invariant subspace, aga.m a contradiction. Iterating this argument now
guarantees u,(x)>0 on £ for i=1,- - -, r. It further follows from [10, Lemma 3.4] that
du,/dv is negative on 9f2 for each i, proving the result.

THEOREM 3.2. Suppose there are p >0 and x €8 such that (M +p)(x,) is irreduci-
ble. Then if A is as in Theorem 2.3, \ is a geometrically simple eigenvalue.

Proof. Suppose u and v are nontrivial solutions of (1.1) with u€K. Lemma 3.1
implies u € int K. Hence for small 8, u—8v€intK. Let 8* =sup{6>0: u—dv<€intK },
8, =inf{8<0: u—dveintK }. Since v+0 at least one of §* or §, must be finite. With
no loss of generality, assume 8* < co. Then u—8*v €9K. Lemma 3.1 implies u=§*v.

LEMMA 3.3. Suppose there are p 20 and xo € such that (M + p)(xg) is irreducible.
Then if A is as in Theorem 2.3, (I1— AA)Zz 0 implies (I—A4,)z=0.

Proof. Suppose (I — A3)?z=0. Then Theorem 3.2 implies that (I — A5 )z = cu, where
u=Asu. Let AF denote the Banach space adjoint of Ay considered in Cy(£2,R"). The
Krein Rutman theorem implies there is a continuous linear functional f* (with
F*(K)C[0, 0] and f*(intK)C (0, o0)) such that 4%f*=f*. Hence

frz—f*a5z=cf*(u)

which implies 0 = ¢f *(u). Hence, since u€int K, ¢=0.
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THEOREM 3.4. Suppose m ;=0 for i=1,- -, r. Then if M(x,) is irreducible for some
x,€Q and X is as in Theorem 2.3, A is an algebraically simple eigenvalue and the only
positive eigenvalue admitting a solution u, where u€ K.

Proof. That A is an algebraically simple eigenvalue is a consequence of Lemma 3.3.
Suppose now N >A is such that v=NL™'Mv, with v€K. Then Lemma 3.1 implies
v€intK. Furthermore, since r(4,) is a strictly increasing function of A, r(4y)>1.
The Krein-Rutman theorem implies the existence of € K\{0} such that r(4y)o=
A, D. Applying Lemma 3.1 to the equation

}\I
Ly=——M5p,
r(Ax)

we conclude that in fact f€intK. For >0 and sufficiently small, v—85€int K. Let

*=sup{8>0: v—85€intK }. Since jeintK, 8*<co and v—8* €K, ie., §* <.
Hence §*r(Ay)b=08%4,0<Ayv=v. It follows that 8*r(A4y)<8%*, and so r(4y)<1, 2
contradiction.

We do not know in general whether Theorem 3.4 remains valid if the assumption
m;=0 for i=1,---,r is removed. However, with some additional restrictions on the
system (1.1), the theorem remains valid. As we shall see, the restrictions are substantial.
Nevertheless, the result is quite useful from the point of view of applications to
nonlinear analysis. Before stating the result, we give two lemmas which will be needed
in the proof.

LeMMA 3.5. Suppose that m;(x)<1/r, i#j, and that ~l<muz—-1+1/r for
Jj,i=1,-, r. Then there is no positive eigenvalue for (1.1) admitting a solution in K\{0}.

Proof. The result follows from an application of the maximum principle. See [14,
pp- 188-192}.

LEMMA 3.6. Let m;+1>0 for i=1,---,r, let M+1I be irreducible, and assume
there is A>0 and u€K\{0} such that Lu=AMu. Then N((I-AL7'M)*)=
N(I—AL™M)=(u), whenever L™*M =ML

Proof. That N(I—AL™M)=(u) follows from the fact that u€intK (see Lemma
3.1). Consider A(L+X)~1(M+1). By the proof of Theorem 3.4, r(A(L+A)" (M+1))
=1. If A% denotes the Banach space adjoint of A(L+A)"Y(M+1), the Krein-Rutman
theorem guarantees the existence of continuous linear functional f* such that A{f*=
f * and such that f*(intK)C (0, c0).

Suppose (L—AM)*x=0. Then Lx —AMx=cu, for some cER. Hence (L+A)x~—
A(M +1)x = cu, or equivalently, x —A(L+A)"}(M+1)x=c(L+A) " u. It follows that
FEx—f*ANL+N)"Y M+ Dx)=cf *(L+N)"'u). Now FEL+AN)"Y(M+1x)=
(Aff*)x=f*x. So 0=cf *((L+A)"'u). Since u€int K, c=0.

Finally, if L~ '"M=ML™" and (/—AL7'M)*x=0, then a simple computation
shows (L—AM)%*x=0. Hence (L—AM)x=0, or equivalently, ({ — AL M)x=0.

Remark 3.7. We note that in Lemma 3.6 that we do not need m ;>0 for some
ie{1,2,---,r}.

THEOREM 3.8. Suppose that the conditions of Theorem 2.3 are satisfied. In addition,
assume

(1) m;=1/r, ifi#j;

(i) —1/2r<m;<1/2r, fori=1,---,r.

If L"'"M =ML, (M+1) is irreducible, and if A is as in Theorem 2.3, then X is a
simple eigenvalue for (1.1) and the only positive eigenvalue admitting a solution u, with

ue K\{0}.




E‘ucible for some
we and the only

of Lemma 3.3.
ma 3.1 implies
A, r(4y)>1.
that r(Ay)o=

EIGENVALUE PROBLEM FOR COUPLED ELLIPTIC SYSTEMS 855

Remark 3.9. (a) Since (1.1) may be rescaled, conditions (i) and (ii) above are
restrictions only on the relative sizes of the diagonal versus off-diagonal terms of the
matrix M. The commutativity condition requires that L,=L; for i,j=1,-- -, r, and that
M be constant, although M may have negative entries on its main diagonal.

(b) The proof relies on an “unfolding” of the problem in a manner analogous to
that employed in [12]. We also obtain partial results in case (M +I)(x,) is irreducible
for some x, € Q (dropping the commutativity assumption).

Proof of Theorem 3.8. Assume initially only that M satisfies conditions (i) and (ii)
of the hypotheses and that (M +1)(x,) is irreducible for some x, €. Let A>0 and
t€R and define 4, , by

Ay =ML+ H(M=1+1).

We first observe that there is 1* €(0,1—~1/2r) such that 4, , is a positive opera-
tor for A>0 and ¢ <t* and that the equation :

(3.1) u=A, u

has no solution with A> 0, r=¢*, and u< K\ {0}. To see that this is the case, consider

- —1~<minm,.,.(x)5maxm,..(x) <X
2r en = xen 2r

for some i€ {1,2,---,r}. It follows that if 0<¢<1-1/2r, then min, cgm;(x)—1>
—1, and that if 1> max , cgm;(x)+1—%, then max, .g—m;(x)—t< —1+1/r. Since
) 1 1 1

1
T:%mif(x)+1_7<§7+1-7_1—5,_r’

our observation follows from Lemma 3.5.

Next observe that if # <0, Theorem 2.3 implies that there exists a smallest positive
number A(?) such that (3.1) has a solution u € K\{0}. If r=1*, no such number exists.
We now define a function f: (— 00,1*]—[0, c0) by

F(1)= { 1/3 provided A(2) exists,
0 otherwise.

Suppose now ¢ <t’ <t* and there exists A(z')>0 and u € K\ {0} such that
u=A(t")(L+A () (M=t +1)u.
Since 0 <m;;—t'+1<my—t+1fori=1,---,r, we have
u AW L+A()) (M—t+1)u.

It follows that A(r) exists and A(z)<A(t). Furthermore, if f(¢)=0, f(¢)=0 for
t€[t’,t*]. Hence f is a monotonic nonincreasing function and, as such, can have at
most a countable number of discontinuities.

Suppose now that A,>0, ty<t*, and u€ K\ {0} such that

u=Ao(L+Ng) (M—1,+1)u.

Lemma 3.1 implies that u€intK. It follows from Lemma 3.3 that 1 is a simple
eigenvalue of Ag(L+Ag)~Y(M—1y+1) and that 7(Ag(L+A,) (M —t,—1))=1. Since
r(A(L+A)"}(M—1t+1)) depends continuously on A and 7, a perturbation theory
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argument will show that if a(A,?)=r(A(L+X)"Y(M—t+1)), a is an analytic function

of (A,t) in a neighborhood of(A, t,). Furthermore, one may choose an eigenfunction.

u(A,t) corresponding to a(A,#) so that u(A, 1) is analytic in (A, t) also. (The perturba-
tion theory argument necessary can be adapted from [17, pp. 57-64]. We note only that
the simplicity of the eigenvalue 1 of A (L+A,)"}(M—1t,+1) is essential to the
argument.) Let us now consider the equation

(3.2) au=A(L+N) " (M—1+1)u.
Differentiating (3.2) with respect to ¢ and evaluating at (A, ?,) we obtain

a, (Ao, o) u(Ng,1g) +u,(Xg,20)

33 _ -
(3) =No(L+Xg) T (M—15+1)u, (Ao, 16) —Ao(L+1A,) "u(Xo,to)-

Let A% ., be the Banach space adjoint of 4, , . The Krein—Rutman Theorem implies
that there is a continuous linear functional f* (with f*({intK)C(0, o0)) such that

f*Ay, =A%, . f*=[* Applying f* to (3.3) yields
(3.4) a(Nos 1) f*(#(Ngs10)) = =Aof *[(L+2g) "Mu(Ag,10)]-

Since u(A,,t5)€intK, a,(Ay,t0)#0. The Implicit Function Theorem implies the ex-
istence of 8 >0 and a smooth function g: (Ay—38,Ay+8)—> R such that g(Ay)=1, and
a(A,g(A)=1. B

Since f is nonincreasing, if #, <t, and f(t;)=f(¢,)>0, then f(2)=f(t;)=1/A(#)
for r&(1,,1,]. So a(A(2),t)=1 for t€[1,t,] by Lemma 3.3. But for any 7,€(1,,1,),
the preceding argument shows that the solution set to a(A,z)=1 is expressible as a
function of A in a neighborhood of (A(%,),#,), a contradiction. Hence f is strictly
decreasing so long as it remains positive.

Let t**&(0,1—-1/2r) be given by r**=inf{rgr*: f(¢)=0} and also let y=
Hm,_, __f(?) and O <w=inf{ f(¢): f(+)>0}. Since f is strictly decreasing, it has an
inverse h defined from a subset of (w,y) into (— oo, 7**), We claim that this function A
is extendable to a continuous function h: (0,y)—(— c0,7**) such that if s€(0,y),
a(l/s,h(s)=1. ’

Let us now establish this claim. Let zy<z** and let

Ly= lim f(#)z lim f(#)=R,>0.
=ty =1

It follows from [13] that

1 1
a(‘ig,to)——l and a('k—g,to)-—l.

The minimality of A(#,) implies that Ly=f(t,). Notice that if < —1/2r, Theorem 3.4
implies that Ly=R,. So if Ly>R,, t,€(—1/2r,t**). Furthermore, the Implicit
Function Theorem may be applied as before at (1/L,,t,) and (1/Rg,2,), giving
functions g, and g, respectively. Notice that: if A€[1/Ly,1/R ] and g,(A) is defined,
then Theorem 3.4 and the minimality of A(¢) for ¢>t,, implies that g,(A)€[—1/2r,1,],
and similarly for g,(A). By [13], g,(A) and g,(A) can be extended on [1/L,,1/R,]
Since A5, is monotonic in ¢ for fixed A, so must r( A4y, ;) be. Hence if g,(A)+ g,(A) for
some A€[1/Ly,1/R,], a(A,t)=1 for ¢ between g,(A) and g,(A), a contradiction to
the Implicit Function Theorem. Hence # may be defined on [R, L] by h(s)=g,(1/s).

J
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We have now shown the existence of % on (w,y). If @=0, there is nothing more to
do. If w>0, then a(1/w,t**)=1 and the Implicit Function Theorem guarantees the
existence of a g as before with g(A)&[~1/2r,t**] and a(A,g(A))=1. Since g(A) &
[—1/2r,t**], it again follows from the continuity of the spectral radius [13] that g is
extendable to (1 /w, o). Defining % (s)= g(1/s) for s€(0, w) completes the verification
of the claim.

Now assume that L~'M =ML, Suppose there is a t,&(~1/2r,t**) such that
Lo>R,. Now 1/Ly=A(ty)< 1/R0<7\(t) for 1>1,. Lemma 3.6 implies there exists a
8<(0,1) such that the Leray—Schauder indices ind;g(1—(1+8)A(z) L™ (M —1t,))
and ind LS(I (1=8)A(ty) L™} (M —t,)) are defined and unequal. We may also assume
that §>0 is sufficiently small so that ((1+8)A(¢,)<1/R,. The homotopy invariance
property of the Leray—Schauder degree guarantees that

ind ;s (7—(1+8)A(t,) L™Y(M—1))#ind ;s (I—(1—8)A (1) L™ (M ~1))

for t&(y,t5+¢) for £>0 and sufficiently small. Hence for & (#y,1,+¢) there exist
0 <A <A(2) with N(I—AL™Y(M—1t))+ {0}, a contradiction. Hence Ly=R,and so f is
continuous on (— c0,?**). A similar argument gives lim, _, ,«.f(¢)=0 in this case.

The uniqueness assertion of the theorem is now evident from the Implicit Function
‘Theorem and the monotonicity of r(4, ,)in z.

CoroLLARY 3.10. Suppose M satisfies (i) and (ii) of Theorem 3.8 and (M +I)(x,)
is irreducible for some x, Q. Then if h, Ay, and vy are as in the proof of Theorem 3.3,
then the set {(A,1)€(0,00) X (—co, t**]: u=A, ,u for some uc K\{0}}={(A,h(3)):
AE(}, )]

The requirement that (M +p)(x,) be irreducible for some x,€%Q represents a
rather strong coupling in the equations of the system. The other extreme is an uncou-
pled system, i.e. m;;=0 on @ if i+#. Both, however, may be viewed as special cases of
the following.

Condition 3.11. There is a finite sequence of row and column interchanges under
which M is equivalent to a matrix of the form

M,
(3.5)

M,

where M; is an r;Xr, matrix, with r;+ --- +r=r. Furthermore, (2.1) is equivalent
(under an appropriate relabelling of the u,’s) to the collection of systems

(3.6) Luv,=AMy,, i=1,---,!]
where
wy
;=
w

has the property that v,€0K; and v, a solution of (3.6) implies v,=0.

As is evident, not all systems of the form (1.1) satisfy Condition 3.11. However,
there are sufficient conditions other than the above special cases under which Condi-
tion 3.11 holds. We will not dwell on these here.
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-, I be defined as follows:
i=2,---, 1 Then (1.3) can be equivalently expressed as

Suppose now Condition 3.11 is satisfied. Let &, i=1,
k,=0, k,=%;

j<ilp b

Lki+1 Ug,+1
(3.7) :
Lki+ri uk,-+r,-
}\k,--l»l Myt k41 770 Mgt frr, || YK+l
= - . . ’
>‘k,~+r,» My vrki+1 " Mpar ke, || Ykrr,
i=1,---,1 Let F, denote the function of Theorem 2.5 relative to (3.6) (i). We have the

followmg result, whwh is similar in spirit to the results of [6]. _

THEOREM 3.12. Suppose Condition 3.11 holds and that for each i=1,---,1, there
exists d(i)€{(1,---,r;} such that (m, . 4, kit d(,.))*%O. Assume also that (ii) of Theo-
rem 2.5 holds for {(A .-+ Ag ., )ERT Ay =1}. Then the set
{(Ay,- -, X )ERL: (3.6) has nontrwzal solution in K} U, 1T where T,=(R )% X
im(F)X(R )~ &+, Furthermore, the geometric multiplicity of (Ay,---,\,) is pre-
cisely the number of sets T, of which (Ay,- -+, \,) is a member.

Proof. The result follows easily from Theorem 2.5, the resuits of §3, and the
definition of Condition 3.11.

We conclude this section with a brief examination of the system

(3.8) ) Liu=Xu+v), Ly=>Av.

(3.8) is a typical example of a system for which Condition 3.11 fails to hold. Multiplic-
ity results for more general upper-triangular nonsymmetric matrices M may be ob-
tained in a manner analogous to that which follows. To this end, consider

(3.9) Liu=X(u+v), Ly=p.

Let A, and A, represent the first eigenvalues for L, and L,, respectively. If (3.8) has a
nontrivial cone solution, either v=0 or p=A,. In the first case, A=A, If p=A,,
however, it follows from the results of [12] that a nontrivial solution (%) with %> 0 and
v>0 (note that u=0 implies v=0) is possible only in case A<A,. In particular, it
follows that if A;=A,, then A=A,=A, is a characteristic value of (3.8) which is
geometrically but not algebraically simple.

4. Bifurcation results. In [11], Hess combined the result of Theorem 2.3 with the
methods of [3] to obtain a bifurcation result for the nonlinear eigenvalue problem

(4.1) Lu=XA(u).

Here 4: K— Cy(2;R") is the Nemytskii operator associated with a continuous func-
tion a: @ X (R*)"—R". He assumed that a satisfies the following conditions:

(4.2) a(x,0)=0, xeQ.

4.3) There exists an X r matrix m of functions m,,€ C(2;R) such that

a(x,0)=m(x)o+o0(|o])
as |6]—0, s€(R*)" (uniformly for x& Q).
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(4.4) There exists a number « > 0 such that
a(x,0)= —ao
for (x,0)EQX(R*)".

Under the above conditions, Hess showed that if 2*={(A,u)eR X CX(2,R"):
A>0, ueK, Lu=AA(u)}, Z* contains an unbounded component =, emanating from
(A*,0), where A*=A (A as in Theorem 2.3). He also identified certain cases when
A*=X (namely m,,>0 for k, [=1,---,ror m;,;=0if k+#1).

Our results show that if (M + p)(x,) is irreducible for some x,&, then, at least
locally, if (A, u)eX, and u+#0, then u€int K. Furthermore, if ¢ is independent of x
and L,=L,; for i,j=1,- -, r, Theorem 3.8 implies that also in this case A* =A2.

We now establish some results on the multidimensionality of the nontrivial bifur-
cating solutions for nonlinear analogues of (1.3). The principal techniques for establish-
ing such are the theorems of Alexander and Antman [1] and Fitzpatrick, Massabo, and
Pejsachowitz [9]. Both results require that one work in an open subset of R"XE, E an
appropriate Banach space. (In this case, [C3,*(Q,R)]" is suitable, where 0 <a<1,
provided the coefficients of L, and the m,, are in C*(8,R). A precise definition of the
spaces is found in [10].) A formulation based on [3] is not immediate. We therefore
consider

A
(4.5) Lu= Mu+H(A;,- -, A, u),
A'I’
where H: R"XR"— R’ is continuous, cone-preserving and H(A;,- -+, A, wy, -, W)=
o([(wy,+ + -, w,)|) (uniformly for (A,---,A,) in compact subsets of R"). It follows from
[5] that the techniques of [1] are applicable to (4.5) provided (A,- - -, A,) is an algebrai-
cally simple characteristic value of (1.3).

THEOREM 4.1. Suppose there is k€ {1,-- -, r} such that m},#0 and that for p>0
and sufficiently large (M +p)(x,) is nonnegative irreducible for some x,€Q. (If pz0 is
required, assume that the conditions of Theorem 3.8 also hold.) Suppose that
H(Ay, - A, ~u)=—H(A,-- -, A, u) and that F is as in Theorem 2.5. Then there
emanates from im F X {0}N(R ) X E a connected set S of solutions to (4.5) such that

@) (A, -+, A, u)E S implies either u€int or (Ay,- -+, A,,u)€imFX {0};

(ii) S\(Im F X {0}) is of topological dimension at least r at every point.

Remark 4.2. (i) For a precise definition of topology dimension, see [1] and its
references.

@) If (A,- - -, A,) is restricted to a ray emanating from the origin of R”, the global
bifurcation alternatives of Rabinowitz [15] hold. (See also [9].) It then follows that S is
unbounded in the sense that SNA(R,) X Co(Q,R")* 2.

(iii) The oddness condition on H is a representative condition guaranteeing the
existence of “small” positive solutions. Certainly, other such conditions are possible.

COROLLARY 4.3. Suppose Condition 3.11 holds with [>1. Consider (4.5) and assume
H of (4.5) has the form

A
H(}\l’.“’}\r’ul"."ur)= H(ul’“'ﬂur)'
A

r



860 ROBERT STEPHEN CANTRELL AND KLAUS SCHMITT
Consider the problem
L, U A U
(4.6) C = M| :
L’l u"x >\fx u’l
A
+ . H*(ula”"url)9
A,‘
where

ﬁ1(u1,' .., url,o’. ..,0)
H*(ul""’un)=
ﬁq(”u‘ ..’url,(),. . .,0)

Suppose that if (Ay,---, AU, u,) is a solution of 4.6y then (Ap,---, A,
}\,l,rl,- cu AL UL, u,l,O,- -+,0) is a solution of (4.5) for any choice of >\,1+1,- cu A,
Then if M,, H* and F, satisfy the hypotheses of Theorem 4.1 with respect to (4.6), there
emanates from [imF, X(R*)1]x{0}c(RT) X [C2(Q,R)]" X {0} a connected set of
cone solutions to (4.5) such that (Ay,- -+, A uy," -+, u,l,O,- --,0eS8 and (uy,- -, u,l)$0
implies (uy;- - -, u, YEintK,. Furthermore, S\([im F, X (R*)"~"]x {0}) has a topologi-
| cal dimension at least r at every point.

M Proof. If (A, .1, " -, A,) are considered fixed, T heorem 4.1 guarantees the ex-
istence of a set S of solutions to (4.6) as above with topological dimension at least r;.
Then S=SX(R*)"™".

Corollary 4.3 raises the obvious question: do there exist other “small” positive
solutions with (u, ., - -, 4, not identically zero) bifurcating from [im F; X (R ") )X
{0}? The answer 1s no, provided (Ay,- -+, A,) is algebraically simple (with respect to all
of M) and H is sufficiently well behaved. More precisely, we have the following result.

COROLLARY 4.4. Suppose (Ay,- -+, A,)EimF, X (R*)"™" is as in Corollary 4.3 and
that

A A ’

dimN | I- LM |=dimN||I-]| - LM| |=1.
A A,

r

Suppose also that there exists a continuous monotonic function G: R*—>R™ such that
G(0)=0 and for allv,we E=[Cy*(Q,R)]"

”ﬁ(vl" T Ur)"ﬁ(wl" W) ”E
éG("(Uh' ., 0,) “E+ |l(W1" W) ”E)”(Ula' <, 0)— (W, W) ”E

Then near (A, -+, A,,0,--+,0) in (R*)"XE, the solution set of (4.5) is as described by
Corollary 4.3.

Proof. The result follows from the generalization [1, Thm. 3.12] to several parame-
ters of the global bifurcation theorem of Rabinowitz [16, Thm. 1.19].




en Ay Ay
Lf >\r1+1" T }‘r'
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connected set of
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We conclude this article by demonstrating the applicability of Corollaries 4.3 and
4.4 to the question of stable coexistence states in the Volterra-Lotka competition
model with diffusion, recently studied by Cosner and Lazer [8], among others. The
model in question is as follows:

—Au=au~—bu?—cuv,
(4.7) — Av=dv— euv — fo?,

with u(x) and v(x) the population densities of the competing species at x €£J, an open
bounded smooth domain in R”, subject to u=0=0 on 3. a and d,b and f and c and
e are assumed to be positive constants, representing growth rates, self-regularization
and competition, respectively, with positive diffusion coefficients normalized to 1. The
only solutions to (4.7) with physical significance are those with >0, v2 0.

We will now consider (4.7) as a bifurcation problem with a and d acting as
parameters and b, ¢, e, f considered fixed. Let A; be the first eigenvalue of — A
(relative to © and zero boundary conditions). Then if F; and F, are as in Theorem 3.8
relative to

(4.8) —Au=au, —Av=bhv,

then im(F,)XR={(a,d): a=\,} and RXim(F,)={(a,d): d=M\}.
Consider the problem

(4.9) —~Au=au—bu* inQ,
u=0 on 0.

As noted in [8], (4.9) has a unique positive solution for all a>A;. In fact, one may
realize these positive solutions as one of the two branches guaranteed by [16, Thm.
1.19]. To see this, note that the nonlinearity in the problem

—Au=au—bulu|,
u=0 on 02,

(4.10)

is odd. Since the eigenfunction corresponding to A, is of one sign and since f(x)=x|x|
is continuously differentiable at x =0, a positive branch for (4.10) is guaranteed at least
locally. This branch coincides with solutions to (4.9). One may then use the uniqueness
of the positive solutions, upper and lower solution techniques, the maximum principle,
and global Rabinowitz bifurcation theory [15] to guarantee the continuation of the
branch. Corollary 4.3 and Corollary 4.4 may now be applied. As a result, the only cone
solution to (4.7) possible in a sufficiently small neighborhood of (A,d,0,0), d=#A,, or
of (a,A;,0,0), a#A,, are of the form (a,d,u,0) or (a,d,0,v), respectively. Thus a> A,
d>\, does not give a sufficient condition for stable coexistence states if a#d. This
result strongly suggests stable coexistence states should be in general viewed as a
secondary bifurcation phenomenon, as is the case in [4] and [7].

Note. Tt has been observed by one of the referees for this paper that the use of
irreducibility in Lemma 3.1 is similar to that in the paper, G. J. Habeitler and M. A.
Martino, Existence theorems and spectral theory for the multigroup diffusion model, Proc.
Symposia in Applied Mathematics XI. Nuclear Reactor Theory, American Mathemati-
cal Society, Providence, R1, 1961, pp. 127-139.
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